Telegram Group & Telegram Channel
Что вы знаете про работу с временными рядами?

Временной ряд — это последовательность значений, которые были измерены в определённом временном промежутке. Такой тип данных может появляться повсеместно. Например, компаниям часто требуется знать ответ на вопрос: что будет происходить с показателями в ближайший день/неделю/месяц. Такими показателями могут быть количество пользователей, установивших приложение, пиковый онлайн и т.д.

Работа с временными рядами — это в основном прогнозирование. С точки зрения машинного обучения мы занимаемся задачей регрессии — предсказываем следующее в ряду значение. Прогноз значения ряда в какой-то момент времени строится на основе известных значений ряда до этого момента времени. Также имеет смысл строить предсказательный интервал для значений.

Виды прогнозирования:

▪️Наивное: «завтра будет как вчера»
Или «почти как вчера». Тут чаще всего используется скользящее среднее для предсказания значение ряда.
Модификацией простого скользящего среднего является взвешенное среднее, внутри которого наблюдениям придаются различные веса, в сумме дающие единицу, при этом обычно последним наблюдениям присваивается больший вес.

▪️Менее наивное: экспоненциальное сглаживание
Вместо взвешивания последних n значений ряда мы будем взвешивать все доступные наблюдения, при этом экспоненциально уменьшая веса по мере углубления в исторические данные. В этом нам поможет формула простого экспоненциального сглаживания.
Можно расширить этот метод. Будем разбивать ряд на две составляющие — уровень (level, intercept) и тренд (trend, slope). Уровень — это и есть ожидаемое значение ряда, которое мы уже предсказывали. А тренд можно тоже прогнозировать при помощи экспоненциального сглаживания.
Кроме того, можно добавить третью компоненту — сезонность, и предсказывать её тоже. Такая модель тройного экспоненциального сглаживания больше известна по фамилиям её создателей — Чарльза Хольта и Питера Винтерса.

Среди других методов анализа временных рядов выделяются:

▪️ ARIMA;
▪️ Сезонная ARIMA (SARIMA);
▪️ Рекуррентные нейронные сети (RNN).

#машинное_обучение



tg-me.com/ds_interview_lib/326
Create:
Last Update:

Что вы знаете про работу с временными рядами?

Временной ряд — это последовательность значений, которые были измерены в определённом временном промежутке. Такой тип данных может появляться повсеместно. Например, компаниям часто требуется знать ответ на вопрос: что будет происходить с показателями в ближайший день/неделю/месяц. Такими показателями могут быть количество пользователей, установивших приложение, пиковый онлайн и т.д.

Работа с временными рядами — это в основном прогнозирование. С точки зрения машинного обучения мы занимаемся задачей регрессии — предсказываем следующее в ряду значение. Прогноз значения ряда в какой-то момент времени строится на основе известных значений ряда до этого момента времени. Также имеет смысл строить предсказательный интервал для значений.

Виды прогнозирования:

▪️Наивное: «завтра будет как вчера»
Или «почти как вчера». Тут чаще всего используется скользящее среднее для предсказания значение ряда.
Модификацией простого скользящего среднего является взвешенное среднее, внутри которого наблюдениям придаются различные веса, в сумме дающие единицу, при этом обычно последним наблюдениям присваивается больший вес.

▪️Менее наивное: экспоненциальное сглаживание
Вместо взвешивания последних n значений ряда мы будем взвешивать все доступные наблюдения, при этом экспоненциально уменьшая веса по мере углубления в исторические данные. В этом нам поможет формула простого экспоненциального сглаживания.
Можно расширить этот метод. Будем разбивать ряд на две составляющие — уровень (level, intercept) и тренд (trend, slope). Уровень — это и есть ожидаемое значение ряда, которое мы уже предсказывали. А тренд можно тоже прогнозировать при помощи экспоненциального сглаживания.
Кроме того, можно добавить третью компоненту — сезонность, и предсказывать её тоже. Такая модель тройного экспоненциального сглаживания больше известна по фамилиям её создателей — Чарльза Хольта и Питера Винтерса.

Среди других методов анализа временных рядов выделяются:

▪️ ARIMA;
▪️ Сезонная ARIMA (SARIMA);
▪️ Рекуррентные нейронные сети (RNN).

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/326

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.Библиотека собеса по Data Science | вопросы с собеседований from sa


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA